smiths connectors

HPD & HPF CONNECTOR SERIES

High Reliability Signal Connectors

HYPERBOLOID TECHNOLOGY

Smiths Connectors offers an extensive range of superior contact technologies suitable for standard and custom solutions. Hypertac[®] (HYPERboloid conTACT) is the original superior performing hyperboloid contact technology designed for use in all applications and in harsh and demanding environments where high reliability and safety are critical. The inherent electrical and mechanical characteristics of the Hypertac hyperboloid contact ensures unrivalled performance in terms of reliability, number of mating cycles, low contact force and minimal contact resistance. The shape of the contact sleeve is formed by hyperbolically arranged contact wires, which align themselves elastically as contact lines around the pin, providing a number of linear contact paths.

FEATURE

LOW INSERTION/EXTRACTION FORCES

The angle of the socket wires allows tight control of the pin insertion and extraction forces. The spring wires are smoothly deflected to make line contact with the pin.

LONG CONTACT LIFE

The smooth and light wiping action minimizes wear on the contact surfaces. Contacts perform up to 100,000 insertion/ extraction cycles with little degradation in performance.

LOWER CONTACT RESISTANCE

The design provides a far greater contact area and the wiping action of the wires insures a clean and polished contact surface. Our contact technology has half the resistance of conventional contact designs.

HIGHER CURRENT RATINGS

The design parameters of the contact (e.g., the number, diameter and angle of the wires) may be modified for any requirement. The number of wires can be increased so the contact area is distributed over a larger surface. Thus, the high current carried by each wire because of its intimate line contact, can be multiplied many times.

IMMUNITY TO SHOCK & VIBRATION

The low mass and resultant low inertia of the wires enable them to follow the most abrupt or extreme excursions of the pin without loss of contact. The contact area extends 360 degrees around the pin and is uniform over its entire length. The 3 dimensional symmetry of the Hypertac contact design guarantees electrical continuity in all circumstances.

BENEFIT

HIGH DENSITY INTERCONNECT SYSTEMS

Significant reductions in size and weight of sub-system designs. No additional hardware is required to overcome mating and un-mating forces.

LOW COST OF OWNERSHIP

The Hypertac contact technology technology will surpass most product requirements, thus eliminating the burden and cost of having to replace the connector or the entire subsystem.

LOW POWER CONSUMPTION

The lower contact resistance of our technology results in a lower voltage drop across the connector reducing the power consumption and heat generation within the system.

MAXIMUM CONTACT PERFORMANCE

The lower contact resistance of the Hypertac contact reduces heat build-up; therefore Hypertac contacts are able to handle far greater current in smaller contact assemblies without the detrimental effects of high temperature.

RELIABILITY UNDER HARSH ENVIRONMENTS

Harsh environmental conditions require connectors that will sustain their electrical integrity even under the most demanding conditions such as shock and vibration. The Hypertac contact provides unmatched stability in demanding environments when failure is not an option.

TECHNICAL CHARACTERISTICS

Contact number	17, 29, 33, 41, 48, 53, 62, 65, 72, 80, 84, 96, 98, 119, 120, 149 & 160
Contact diameter	0.60 mm
Current rating	4 A
Contact resistance	7 mΩ (max)
Contact mating force	0.28 N (average)
Contact life cycle	> 2,000
Breakdown voltage between contacts	1,920 VAC (min) <i>[sea level]</i>
Dielectric withstanding voltage	1,400 VAC (min) <i>[sea level]</i>
Temperature rating	-55° to +125 degree C
Insulation resistance	5 GΩ @ 500 VDC (min)
Insulator material	DAP
Contact	
- Material	Copper alloy
- Plating (mating surfaces)	1.27 micro-metres gold plate (min)
Guide hardware	
- Material	Stainless steel BS 303
- Plating	Passivated

The following unshrouded sizes are in compliance to:						
MIL-C-55302/159 and 162	17, 29, 41, 53 and 65 position					
MIL-C-55302/160 and 163	72, 84, 96 and 120 position					
MIL-C-55302/161 and 164	160 position					
BS 9525 N0001/1982	17, 29, 33, 41, 53, 65, 72, 84, 96 and 120 position					
BS 9525 F0041/1989	17, 29, 33, 41, 53, 65, 72, 84, and 96 position Incorporates BS 9525 N0001 testing but includes Gunfire vibration test.					
BS 9525 F0053/1995	Additional specification to BS 9525 N0001 with extra terminations.					
BS 9525-F-0016/1995	48, 62, 80, 98, 119, 149 and 160 (Solid insulator) position					

The following shrouded sizes are qualified to:

BS 9525-F-0016/1995

48, 98, 119 and 160 position

Space qualification:

ESA/SCC 3401/016/017

HPD/HPF CONNECTORS SUMMARY

Number of positions	Overall length mm	Contact rating at s.t.p. Amps	Number of contact rows	Contact pitch mm	Contact pin diameter mm	Connector prefix	Shrouded/ Unshrouded
17	38.50	4.0	2	2.54	0.6	HPD	Unshrouded
29	53.70	4.0	2	2.54	0.6	HPD	Unshrouded
33	58.80	4.0	2	2.54	0.6	HPD	Unshrouded
33	62.70	4.0	2	2.54	0.6	HPP	Shrouded
41	69.00	4.0	2	2.54	0.6	HPD	Unshrouded
41	72.90	4.0	2	2.54	0.6	HPP	Shrouded
48	58.30	4.0	3	2.54	0.6	HPF	Unshrouded
48	61.00	4.0	3	2.54	0.6	HPM	Shrouded
53	84.20	4.0	2	2.54	0.6	HPD	Unshrouded
53	88.10	4.0	2	2.54	0.6	HPP	Shrouded
62	69.00	4.0	3	2.54	0.6	HPF	Unshrouded
65	99.50	4.0	3	2.54	0.6	HPD	Unshrouded
65	103.12	4.0	2	2.54	0.6	HPP	Shrouded
72	114.70	4.0	2	2.54	0.6	HPD	Unshrouded
80	84.20	4.0	3	2.54	0.6	HPF	Unshrouded
84	129.60	4.0	2	2.54	0.6	HPD	Unshrouded
96	145.20	4.0	2	2.54	0.6	HPD	Unshrouded
96	148.82	4.0	2	2.54	0.6	HPP	Shrouded
98	99.50	4.0	3	2.54	0.6	HPF	Unshrouded
119	117.26	4.0	3	2.54	0.6	HPF	Unshrouded
120	175.50	4.0	2	2.54	0.6	HPD	Unshrouded
120	161.40	4.0	2	2.54	0.6	HPP	Shrouded
149	142.55	4.0	3	2.54	0.6	HPF	Unshrouded
160	158.00	4.0	3	2.54	0.6	HPF	Unshrouded
160	161.30	4.0	3	2.54	0.6	HPM	Shrouded

HPD CONNECTORS SUMMARY

HPD/HPF Connectors Series offer a wide range of termination and guide styles. A 'Preferred Options' list, as illustrated below, has been prepared. These offers utilise the more common piece parts and selections have been made from across the range. To benefit from standard price/lead time reductions a connector must be assembled from parts within the Preferred Listings.

TERMINATION STYLES - PREFERRED OPTIONS

A wide range of Termination Styles is available, please see page 4 and 19. Please enquire with our Sales Office for additional details on Termination Styles

Term type	Part no.	Description		
В	HPD-488-7 male 1 st row	Through board solder-90 degree		
В	HPD-489-7 male 2 nd row	Through board solder-90 degree		
В	HPD-462-7 male 3 rd row	Through board solder-90 degree		
В	HPD-596-9 female 1 st row	Through board solder-90 degree		
В	HPD-598-9 female 2 nd row	Through board solder-90 degree		
В	HPD-599-9 female 3rd row	Through board solder-90 degree		
С	HPD-486-7 male	Crimp		
С	HPD-526-9 female	Crimp		
L	HPD-685-7 male 1 st row	Through board solder-90 degree		
L	HPD-688-7 male 2 nd row	Through board solder-90 degree		
L	HPD-691-7 male 3rd row	Through board solder-90 degree		
L	HPD-708-9 female 1 st row	Through board solder-90 degree		
L	HPD-712-9 female 2 nd row	Through board solder-90 degree		
L	HPD-716-9 female 3rd row	Through board solder-90 degree		
Р	HPD-487-7 male	Through board solder-straight		
Р	HPD-522-9 female	Through board solder-straight		

GUIDE STYLES - PREFERRED OPTIONS

A wide range of Guide Styles is available. Please enquire with our Sales Office for additional details

Style	Style	Style	Style	Style	Style
AO (see page 27)	HO (see page 27)	LB*	NC (see page 24)	RA (see page 25)	VL*
BO (see page 28)	JO (see page 27)	LO*	NO (see page 24)	RO (see page 25)	ZO*
EO*	KB (see page 26)	LV*	PO (see page 25)	UO (see page 26)	
GO*	KO (see page 26)		QO (see page 27)	VO (see page 27)	

* Please enquire with our Sale Offices for further details on the above Guide Styles

PLATING FINISH

U-Gold Plate (ASTM-B-488)

HOW TO ORDER

SOLID INSULATOR ΗP 2 3 6 CONNECTOR FAMILY $2 \rightarrow NO. OF CAVITIES$ 029*033*041*053*065*072**084*096*120** **D** 017^{*} **P** 033^{*} 041^{*} 053*065*096*120** 080*098*119*149*160*320** F 048^{*} 062* 098 ** 119 ** 160 * M 048^{*} **3** CONTACT PLATING **GOLD PLATE** (ASTM-B-488) **GOLD PLATE / SPACE QUALIFIED PRODUCT** (ASTM-B-488) **4 CONTACT GENDER** FEMALE MALE • CONTACTS NOT SUPPLIED * PIN CARRIER - HPD & HPF ONLY **5** CONTACT TERMINATION A **B*** **C*** D F L * Ρ* Μ Q R S Т W 5 X * 1 2 Δ 9 3 (See 'HPD contact termination and codes' for details) **0** CONTACTS NOT SUPPLIED **6** • GUIDE STYLE (See 'HPD guide style index' and 'HPD guide styles' for details) or **0 0 GUIDES NOT SUPPLIED 7** \rightarrow variation codes Α 0 NO VARIATIONS 3 CENTRE GUIDE POLARISED DOUTER 2 OF 3 ROWS LOADED CENTRE ROW OF 3 ROWS LOADED **B** PRINTING **0 REVERSE** (BS spec standard) **2 STANDARD** (BS spec standard) **5 REVERSE** (*MIL* spec standard) **7** STANDARD (MIL spec standard) **8 REVERSE** (80 position cut from 160 position) **9 STANDARD** (80 position cut from 160 position) (See 'HPD insulators' for details) С **B** 90° TERMINATION TINNED AND POTTED **1** NO VARIATIONS 90° TERMINATION POTTED **X** TERMINATION TINNED **2** STRENGTHENED INSULATOR 84 AND 96 POSITION VERTICAL MOUNTING ONLY

* off the shelf

** made to order

HOW TO ORDER

TWO PART INSULATOR

	HPF
	1 2 3 4 5 6 7 A B C
1)	CONNECTOR FAMILY
2)	NO. OF CAVITIES 098 160
3)	CONTACT PLATING A GOLD PLATE U GOLD PLATE (ASTM-B-488)
4)	FEMALE
5)	6 7 8 (See 'HPD contact termination and codes' for details)
6)	GUIDE STYLE L1 L2 L5 5G 5L 5N (See 'HPD guide style index' and 'HPD guide styles' for details)
7 →	VARIATION CODES A I NO VARIATIONS CENTRE GUIDE POLARISED D OUTER 2 OF 3 ROWS LOADED CENTRE ROW OF 3 ROWS LOADED
	Image: Display the problem of the p
	2 TWO PART INSULATOR

HOW TO ORDER

IF ADDITIONAL GUIDES ARE REQUIRED

(See 'HPD guide style index' and 'HPD guide styles' for details)

EXAMPLE GUIDE STYLES KS (MALE POLARISED) IS REQUIRED					
HPD06500KS00H	Two (HPD KS) guides				
HPD072000KS00H	Two (HPD KS) guides + one (HPD AS) unpolarised guide				
HPF149000KS00H	Two (HPF KS) guides				
HPF160000KS00H	Two (HPF KS) guides + one (HPF AS) unpolarised guide				

TWO ROW - STYLE HPD

17 to 65 position unshrouded

TWO ROW - STYLE HPP

33 to 65 position shrouded (fitted with male contacts only)

No. of positions	17	29	33	41	53	65
Dimension A	30.48	45.72	50.80	60.96	76.20	91.44
Dimension B	38.50	53.70	58.80	69.00	84.20	99.50
Dimension C	N/A	N/A	62.70	72.90	88.10	103.42

All diagrams are shown in $3^{\mbox{\tiny rd}}$ angle projection with dimensions in millimetres

TWO ROW - STYLE HPD

72 to 120 position unshrouded

Thicker insulators are available for 84 and 96 positions for vertical applications only. They cannot be used in conjunction with shrouded insulators.

TWO ROW - STYLE HPP

96 to 120 position shrouded (fitted with male contacts only)

No. of positions 72 120 84 96 **Dimension A** 106.68 121.92 137.16 167.64 **Dimension B** 114.70 129.90 145.20 175.60 **Dimension C** N/A N/A 149.12 179.50

All diagrams are shown in 3rd angle projection with dimensions in millimetres

8

THREE ROW - STYLE HPF

62 to 80 position unshrouded

Male half use with transverse or vertical mount hardware.

Female half use with transverse or vertical mount hardware.

THREE ROW - STYLE HPF

98 to 149 position unshrouded

Section X-X

No. of positions	62	80	98	119	149
Dimension A	60.96	76.20	91.44	109.22	134.62
Dimension B	68.90	84.10	99.50	117.26	142.66

All diagrams are shown in $3^{\mbox{\tiny rd}}$ angle projection with dimensions in millimetres

99.74 99.74 9.30 max 9.

TWO PART INSULATORS 98 position unshrouded - HPF (with front removable socket contacts for vertical mounting applications only)

160 position unshrouded - HPF

10 | 📈 Di 互

THREE ROW - STYLE HPF

160 position unshrouded

THREE ROW - STYLE HPM

160 position shrouded (fitted with male contacts only)

D

THREE ROW - STYLE HPF

48 position unshrouded

MATING FACE

Please note the 048 way is the only non-symetrical connector in this range. Therefore care should be taken to ensure correct identification code.

CONTACT IDENTIFICATION

(13th Digit in Ordering Code) views on Mating face Female Contact: BS Spec. *2*; MILSpec. *7* (not MIL spec. qualified)

Male Contact: BS Spec. *2*; MILSpec. *7* (not MILSpec. qualified)

Female Contact: BS Spec. *0*; MILSpec. *5* (not MILSpec. qualified)

Male Contact: BS Spec. *0*; MILSpec. *5* (not MILSpec. qualified)

THREE ROW - STYLE HPM

48 position shrouded (fitted with male contacts only)

CONTACT IDENTIFICATION

(13th Digit in Ordering Code) views on Mating face Male Contact: BS Spec. *2*; MILSpec. *7* (not MIL spec. qualified)

Male Contact: BS Spec. *0*; MILSpec. *5* (not MIL spec. qualified)

THREE ROW - STYLE HPF

80 position unshrouded (cut from 160 position)

CONTACT IDENTIFICATION

(13th Digit in Ordering Code) views on Mating face Use with Transverse Mounting Hardware Only Male contact *9*; Female contact *8*

Use with Vertical Mounting Hardware Only Male Contact *9*; Female Contact *8*

INSULATORS POLARISING DATA

TWO ROW CONTACTS

96 position illustrated

			Vi	ews on mating fac	e
	Code (13 th digit)	Contact gender	Left hand guide/ polarising positions	Centre guide/ polarising positions	Right hand guide/ polarising positions
BS spec. standard	*2*	Female			$\left(\circ \circ^2 \right) \stackrel{D}{\sim} \stackrel{E}{\sim} \stackrel{E} \stackrel{E}{\sim} \stackrel{E} \stackrel{E \stackrel{E} \stackrel{E} \stackrel{E} \stackrel{E} \stackrel{E} \stackrel{E \stackrel{E} \stackrel{E} \mathsf{$
	0	Male		049 b 470 Ref. Plane	
	2	Male	$ \begin{bmatrix} E & 0 & 0 & 0 \\ F & 0 & 0 & 0 \\ A & B & 0 & 0 \\ B & 0 & 0 & 0 \end{bmatrix} $		$\circ \circ^{96} \circ^{5} \circ^{4}$
	0	Female		Ref. Plane	
	7	Female	$\begin{bmatrix} 4 \\ 3 \\ 2 \\ 2 \\ 1 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 9 \\ 0 \\ 0$		
MIL spec. standard	*5*	Male		O 49	
	7	Male			$\left(\circ \circ \circ ^{96} \right)_{6}^{5} \left(\circ \circ ^{4} \right)_{3}^{4}$
	5	Female	$A = B 1^{\circ} \circ_{3} ($	Court GH 490 Ref. Plane	

THREE ROW CONTACTS

160 position illustrated

			Vi	ews on mating fac	Ð
	Code (13 th digit)	Contact gender	Left hand guide/ polarising positions	Centre guide/ polarising positions	Right hand guide/ polarising positions
BS spec. standard	*2*	Female	$\begin{array}{c c} 4 & 5 & 160 \\ \hline 3 \\ \hline \end{array} \\ 6 & 0 \\ 6 \\ \hline \end{array} $	$ \overset{85}{\underset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{\overset{0}{0$	$\bigcirc \circ^6 \circ^3 D E$ $\circ^5 \circ 2 \circ \checkmark F$
	0	Male		(0 ₈₃ 0 ₈₁ b a 790 760) Ref. Plane	$)_{Q_4 O_1 B}$
	2	Male	$ \begin{array}{c} E & D & \stackrel{3}{\circ} & \stackrel{6}{\circ} & O \\ F & \bigcirc & C & \stackrel{6}{\circ} & O \\ A & B & \stackrel{1}{\circ} & O_4 \end{array} $	$2^{78} \circ {}^{80}_{e} = {}^{d} {}^{82} \circ {}^{85} \circ {}^{77} \circ {}^{77} \circ {}^{84} \circ {}^{84} \circ {}^{87} \circ {}^{$	$0^{0^{160}}$ 0^{3} 5^{4} 0^{159} 0^{60} 0^{3} 0^{3}
	0	Female		(076 ⁰ 79 ^a b ₈₁ 0 ₈₃) Ref. Plane) o q ₅₈ 1 2
	7	Female	$\overbrace{3 \swarrow 158}^{4 5 160 \circ 0} \overbrace{158}^{160 \circ 0} \overbrace{158}^{0} \circ$	$3^{85} \circ 3^{82} \times 1^{80} \circ 7^{70} $	$\left(\begin{array}{c} 0 & 0^6 & 0^3 \\ 0 & 0 & 0 \end{array} \right) = E$
MIL spec. standard	*5*	Male		(0 ₈₃ 0 ₈₁ H-G ₇₉ O ₇₆ O) Ref. Plane	$ Q_4 O_1 B^{-A} $
	7	Male	$\begin{bmatrix} E & D & 3 & 0 & 6 \\ \hline F & O & C & 2 & 0 \end{bmatrix}$	7 ⁸ 0 ⁸⁰ L К ⁸² 0 ⁸⁵ 0 ⁷⁷ м Л ₄₀	$\left(\begin{array}{c} 0 \\ 0 \\ 159 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
	5	Female			(076 ⁰ 79 ^G ^H 81 ^O 89 ^O Ref. Plane

PANEL PREPARATION DETAILS

TWO FIXING POSITIONS

THREE FIXING POSITIONS 72, 84, 96, 120 and 160 positions

17, 29, 33, 41, 48, 53, 62, 65, 80, 98, 119 and 149 positions

FLOATING MOUNT STYLE

FLOATING MOUNT STYLE

Fixed mount style							
HPD/P HPF/M HPD/P HPF/M							
Dimension W	9.50	12.00	9.00	12.00			

BOARD PREPARATION DETAILS

72, 84, 96 and 120 positions

INSULATORS BOARD PREPARATION DETAILS

48 POSITIONS (views on component side of board)

HPM/HPF COMBINATION

Daughter board - HPM shrouded moulding

HPM/HPF COMBINATION

Daughter board - HPF unshrouded moulding

Mother Board - HPF unshrouded moulding

Mother Board - HPF unshrouded moulding

INSULATORS BOARD PREPARATION DETAILS Ъ

62, 80, 98, 119 AND 149 POSITIONS (except 80 position cut from 160 position)

160 POSITIONS AND 80 POSITION (cut from 160 Position)

No. of positions	17	29	33	41	53	62	65
Dimension A nom.	30.48	45.72	50.80	60.96	76.20	60.96	91.44

No. of positions	72	80	84	96	98	119	120	149
Dimension A nom.	106.68	76.20	121.92	137.16	91.44	109.22	167.64	134.62

CONTACT TERMINATION AND CODES

This section includes details of the standard contact terminations used in most applications. Details of other available contact terminations can be obtained from the sales office of Smiths Connectors.

STYLE B/L

Through board solder - 90°

Dimension A			Part no.							
Term. style	2 R	low	3 R	low		Male			Female	
5	Max	Min	Мах	Min	1 st Row	2 nd Row	3 rd Row	1 st Row	2 nd Row	3 rd Row
В	3.50	2.50	3.10	2.10	HPD 488/*	HPD 489/*	HPD 462/*	HPD 596/*	HPD 598/*	HPD 599/*
L	4.85	3.85	4.45	3.45	HPD 685/*	HPD 688/*	HPD 691/*	HPD 708/*	HPD 712/*	HPD 716/*

STYLE X/P

Through board solder - Straight

Term.	Term. Dimen		Part no.	
style	Мах	Min	Male	Female
х	5.10	4.15	HPD 720/*	HPD 548/*
Р	6.20	5.30	HPD 487/*	HPD 522/*

STYLE C SUPPLIED UNASSEMBLED

Crimp barrel showing cable preparation

Term.	Part no.				
style	Male	Female			
С	HPD 486/*	HPD 526/*			
For 22, 24, 26 aw wire					

GUIDE TORQUE INFORMATION (HPD/HPF)

HPD/HPF TORQUE VALUES

Stainless steel guide

Range	Description	Torque
HPD/HPF	M2.5 mm vertical fixing (Styles EO,LO,and similar)	3 lb f∗in max
HPD/HPF	M1.6 mm transverse fixing non-counter sink (Styles KO,AO,and similar)	1 lb f∗in max
HPD/HPF	Jackscrew with cross pin fitted (Styles PO and similar)	1 lb f∗in max

INTERMATEABILITY CHARTS

JACK GUIDE - POLARISED AND UNPOLARISED

HOW TO USE THE INTERMATEABILITY CHARTS

Examples:

Male guide "CU" has been selected and a mating female guide is required

1) locate "CU" male guide on the above chart;

2) follow the "CU" column down to a shaded area and read across to the left hand side of the chart to find the mating female guide.

From the above intermatability chart female guides JB, JC, JD, JG JH, JN, JO, JU, JW, J3, J4, J7, J8, J9, NB, NT, and NV all with "CU" male guide.

IF BS STYLE GUIDES ARE REQUIRED

Select a guide with a BS style number. (Male guide "MO" has been selected BS No. 77):

- 1) locate "MO" male guide on above chart;
- 2) follow "MO" column down to a shaded area and read across to the left hand side of the chart to find mating female guide (only selecting guides with BS style numbers).

From the above intermatability chart female guides VO, VT and VX are all BS style guides.

INTERMATEABILITY CHARTS

POLARISED GUIDES INTERMATEABILITY CHART

INTERMATABILITY CHARTS

UNPOLARISED GUIDES INTERMATABILITY CHART

QUARTER TURN LOCK POLARISED GUIDES INTERMATABILITY CHART

This Section includes details of the standard guide styles used in most applications. Details of other available guide styles can be obtained from Smiths Connectors sales offices.

NON ROTATING TRANSVERSE GUIDES (MALE) - UNPOLARISED

STYLE NC/NH

Chulo	Dimension A					
Style	2 R	low	3 Row			
	Max	Min	Max	Min		
NC	6.36	5.53	6.60	6.09		
NH	5.30	4.59	5.71	4.88		
When used in	When used in 62 & 80 position insulators add 0.28 mm to dimension A (3 Row)					

STYLE NO

<u>Céulo</u>	Dimension A					
Style	2 R	ow	3 Row			
	Max	Min	Max	Min		
NO	3.30	2.59	3.65	2.94		
NO	Max 3.30	Min 2.59	Max 3.65	Min 2.94		

When used in 62 & 80 position insulators add 0.28 mm to Dimension A (3 Row)

JACK GUIDES (MALE) - UNPOLARISED

STYLE P0

Rotating free connector

STYLE RA/RO

Non rotating transverse mounting

Stule	Dimen	sion A	Dimension B		
Style	Max	Min	Max	Min	
RA	3.80	3.55	7.15	6.75	
RO	5.65	5.40	7.15	6.75	

GUIDES (MALE) - POLARISED

STYLE KB

Transverse mounting with pin protector for use with HPD/HPF only

	Dimension A					
Style	2 R	ow	3 Row			
	Max	Min	Max	Min		
КВ	5.30	4.59	5.71	4.88		
When used in	62 & 80 position in	sulators deduct 0.2	25 mm to Dimensio	n A (3 Row)		

Dim. A 6.10/5.85

M2.5 2.80 dia. Clearance hole

STYLE KO

Transverse mounting

	Dimension A					
Style	2 R	ow	3 Row			
	Max	Min	Max	Min		
КО	3.30	2.59	3.65	2.94		
When used in	62 & 80 position i	nsulators add 0.28	mm to Dimension	A (3 Row)		

STYLE UO

Vertical mounting

Style	Dimension A			
Style	Max	Min		
UO	7.15	6.75		

GUIDES (MALE) - UNPOLARISED

Transverse	mounting
------------	----------

Style	Dimension A					
Style	Max	Min	Max	Min		
AO	3.30	2.59	3.65	2.94		

STYLE HO

Transverse mounting

Stule	Dimension A					
Style	Max	Min	Max	Min		
но	3.30	2.59	3.65	2.94		

STYLE QO

Vertical mounting

Stule	Dimension A			
Style	Max	Min		
QO	7.15	6.75		

JACK GUIDES (FEMALE) - UNPOLARISED

Non rotating vertical mounting

Stule	Dimension A				
Style	Max	Min			
JO	6.85	6.25			

STYLE VO/VU

Rotating free connector

VO assembled VU unassembled

GUIDES (FEMALE) - UNPOLARISED

STYLE BO

Vertical mounting

Style	Dimension A				
Style	Max	Min			
BO	7.15	6.75			

STYLE BU

Transverse mounting

	Dimension A			Dimen	sion B	
Style			2 R	ow	3 R	ow
	Max	Min	Max	Min	Max	Min
BU	5.60	5.20	7.30	6.90	7.50	7.10

GUIDES (FEMALE) QUARTER TURN LOCK-POLARISED

STYLE ZO

Vertical mounting

Style	Dimension A				
Style	Max	Min			
ZO	7.15	6.75			

ACCESSORIES

PIN PROTECTOR (extruded polypropylene)

For plug assemblies HPD style insulator. Available to fit all sizes.

For plug assemblies HPD style insulator. Available to fit all sizes.

ACCESSORIES

PIN PROTECTOR METAL PLATE (blue anodised aluminium alloy)

Use with HPD and HPF connectors only

No. of positions	17	29	33	41	48	53	62	65	80	98	119	149
Dimension A	30.48	45.72	50.80	60.96	49.53	76.20	60.96	91.44	76.20	91.44	109.22	134.62
Protector part no.	HPD	HPD										
	630	631	632	633	1059	634	1030	635	634	640	947	1178
Spacer part no. qty. 2 per	HPD	HPD										
	654	654	654	654	655	654	655	654	655	655	655	655

No. of positions	72	84	96	120	160
Dimension A	106.68	121.92	137.16	167.64	149.86
Dimension A/2	53.34	60.96	68.86	83.82	74.93
Protector part no.	HPD 636	HPD 637	HPD 638	HPD 639	HPD 641
Spacer part no. qty. 3 per	HPD 654	HPD 654	HPD 654	HPD 654	HPD 655

Order countersunk head screws from following table, same quantity as spacers.

	Dimension A						
Style	2 R	ow	3 Row				
	Max	Min	Max	Min			
20-234-2047-01	3.53	2.18					
20-234-2048-01	4.59	3.12					
20-234-2049-01	5.59	4.12					
HPD 1131	6.59	5.12	3.69	2.22			
20-234-2050-01	7.59	6.12	4.69	3.22			
HPD 1132	3.59	7.12	5.69	4.22			
20-234-2051-01	9.59	8.12	6.69	5.22			

When using in 62 & 80 position insulators deduct 0.25 mm to Dimension A (3 Row)

> ACCESSORIES

SEALING GASKETS

CODE NO. HPD 751 (fluorosilicone) 2 ROW GASKET

May be cut to suit all sizes by the user, above 65 positions two gaskets are required per connector.

CODE NO. HPF 197 (silicone) 3 ROW GASKET

May be cut to suit all sizes by the user, above 98 positions two gaskets are required per connector. Similar to that illustrated but with three row configuration.

ALIGNMENT COMB

FOR EUROPEAN MARKET

Connector halves having 90° through board terminations are supplied fitted with an alignment comb to facilitate mounting to the board or panel. Code HPD 354/No. of positions Code HPF 107/No. of positions

Code HPF 107/No. of positions Code HPM 111/No. of positions

CRIMP INFORMATION

AWG	Number and nominal diameter of wires	Crimp tool selector position
22	19 / 0.15 mm	5
24	7 / 0.20 mm	5
24	19 / 0.118 mm	4
26	7 / 0.15 mm	4

TOOLS

Contact extraction tool: Spare tips for above: Contact insertion tool: Crimp tool positioner: Crimp tool: HPD 286 HPD 280 use non ferrous long pointed tweezers HPD 309 MIL-C-22520/2.01

Disclaimer 2014

All of the information included in this catalogue is believed to be accurate at the time of printing. It is recommended, however, that users should independently evaluate the suitability of each product for their intended application and be sure that each product is properly installed, used and maintained to achieve desired results.

Smiths Connectors makes no warranties as to the accuracy or completeness of the information, and disclaims any liability regarding its use.

Smiths Connectors reserves the right to modify design and specifications, in order to improve quality, keep pace with technological development or meet specific production requirements.

No reproduction or use without express permission of editorial and pictorial content, in any manner.

SMITHS CONNECTORS PRODUCT LINES

PCB

- Low, medium and high density board-to-board, cable to board and stacking
- Rugged standard
- Low profile
- Signal, power, coaxial & high speed configurations
- Self configurable board-to-board
- Spring probe connectors
- Mixed signal, power and coaxial contact connectors
- Different termination styles: solder cup, crimp, SMT and SMT flex, press fit, solder dip.

POWER

- Circular
- Configurable rectangular
- Ruggedized
- Single and Multi-Way Connectors
- Power contact up to 1,200 Amps
- Excellent performance in harsh environment conditions
- Cable assembling

EMI/EMP FILTER

- EMI/RFI filtering and transient protection
- RoHS compliant solderless filter connectors available
- Circular, ARINC, D-Subminiature Micro-D
- Filtered adapters for "bolt on" EMI /EMP solutions
- Filter hybrid capability

MODULAR/RECTANGULAR

CIRCULAR

- Metal and Plastic
- Industrial M12, M23, M40, M58
- Crimp and solder terminations
- Various types of cable clamps
- Push Pull/ latch mechanism
- Color coding

HEAVY DUTY

- Ultra reliable hyperboloid contact
- Modular solution: signal, power, data contacts, and fiber optics
- High resistance in harsh environment
- EMC shielding
- Easy cable mounting
- High pressure up to 35K PSI, 250° C
- ▶ High temperature up to 440°C

SPRING PROBES

Signal connectors for hand held and docking

Configurable with modules for signal, power,

coax, fiber optics and/or pneumatics

For rack & panel, and cable applications

Easy configuration in a single frame

Guided hardware for blind

D-sub connectors

Micro-D style

stations

- Z-axis compliantBlind mate engagement
- Blind mate engagem
- Long cycle lifeHigh density
- Fligh density
 Extreme miniaturization
- Printed circuit board test
- Printed circuit board test
 Bare board test
- Coaxial contacts

MIL/AERO STANDARD

- Standard military interface
- ARINC interface
- ARINC 801
- Custom inserts

HIGH SPEED COPPER/FIBER

- Quadrax and Twinax Connectors
- Rugged D-Sub Connectors
- ARINC and MIL-STD Contacts
- Micro Twinax/Quadrax
 - Butt-Joint and Expanded Beam Contacts
 - ARINC 801 Termini
 - Floating Fiber Termini

SMITHS CONNECTORS GLOBAL SUPPORT

AMERICAS

info.us@smithsconnectors.com

Costa Mesa, CA 1.714.371.1100

Hudson, MA 1.978.568.0451

Kansas City, KS 1.913.342.5544

EUROPE

France 33.2.32969176 info.fr@smithsconnectors.com

Germany 49.991.250.120 info.de@smithsconnectors.com

Italy 39.010.60361 info.it@smithsconnectors.com

United Kingdom 44.208.236.2400 info.uk@smithsconnectors.com

ASIA

asiainfo@smithsconnectors.com

Shanghai, China 86.21.3318.4650

Suzhou, China 86.512.6273.1188

Singapore 65.6846.1655

visit us at | smithsconnectors.com | f in 🕑 📇 😵